Online adaptive estimation of sparse signals: where RLS meets the l1-norm
نویسندگان
چکیده
Using the -norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that batch Lasso estimators face when processing observations sequentially, the present paper develops a novel time-weighted Lasso (TWL) approach. Performance analysis reveals that TWL cannot estimate consistently the desired signal support without compromising rate of convergence. This motivates the development of a timeand norm-weighted Lasso (TNWL) scheme with -norm weights obtained from the recursive least-squares (RLS) algorithm. The resultant algorithm consistently estimates the support of sparse signals without reducing the convergence rate. To cope with sparsity-aware recursive real-time processing, novel adaptive algorithms are also developed to enable online coordinate descent solvers of TWL and TNWL that provably converge to the true sparse signal in the time-invariant case. Simulated tests compare competing alternatives and corroborate the performance of the novel algorithms in estimating time-invariant signals, and tracking time-varying signals under sparsity constraints.
منابع مشابه
Adaptive Estimation of Sparse Signals : where RLS meets the l 1 - norm †
Using the l1-norm to regularize the least-squares criterion, the batch least-absolute shrinkage and selection operator (Lasso) has well-documented merits for estimating sparse signals of interest emerging in various applications where observations adhere to parsimonious linear regression models. To cope with high complexity, increasing memory requirements, and lack of tracking capability that b...
متن کاملL1-Regularized STAP Algorithms With a Generalized Sidelobe Canceler Architecture for Airborne Radar
In this paper, we propose novel l1-regularized spacetime adaptive processing (STAP) algorithms with a generalized sidelobe canceler architecture for airborne radar applications. The proposed methods suppose that a number of samples at the output of the blocking process are not needed for sidelobe canceling, which leads to the sparsity of the STAP filter weight vector. The core idea is to impose...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملEnhancing Sparsity by Reweighted l1 Minimization
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained l1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms l1 minimization in the sense that substantially fewer measurements are neede...
متن کاملN ov 2 00 7 Enhancing Sparsity by Reweighted l 1 Minimization Emmanuel
It is now well understood that (1) it is possible to reconstruct sparse signals exactly from what appear to be highly incomplete sets of linear measurements and (2) that this can be done by constrained l1 minimization. In this paper, we study a novel method for sparse signal recovery that in many situations outperforms l1 minimization in the sense that substantially fewer measurements are neede...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Signal Processing
دوره 58 شماره
صفحات -
تاریخ انتشار 2010